Chapter 1	
p.27	In the last line of the paragraph after Equation $(1.18b)$, the last phrase should be: one ohm ⁻¹ is defined as one Siemen (S).
pp.31–34	Complete updated problems are provided in a separate file.
Chapter 2	
p.55	In the table at the bottom of the page, the values of log γ , γ , and Activity for Ca ²⁺ should be -0.089, 0.814, and 8.14 × 10 ⁻⁵ , respectively. The corrected table appears below:
	IonSize Parameter a $\log \gamma$ γ Activity
	Na ⁺ 4 -0.0230 0.948 1.90×10^{-3}
	Cl ⁻ 3 -0.0230 0.948 1.14×10^{-3}
	Ca ²⁺ 6 -0.089 0.814 8.14×10^{-5}
	HCO ₃ 4 -0.0230 0.948 9.48×10^{-4}
pp.73–75	Complete updated problems are provided in a separate file.
Chapter 3	
p.81	In the second line of the paragraph above Equation (3.1), delete the word "negative." Sentence should read:
	Figure 3.1 includes three curves — one for the enthalpy (H) of the molecules, one for the product of the system temperature and the entropy (S) of the molecules, and one for their Gibbs energy (G) .
p.82	In Figure 3.1, the two E^* terms are reversed. The term on the far left should be $E^*_{A+B\rightarrow P}$ and the term on the right should be $E^*_{P\rightarrow A+E}$ The corrected figure appears below: Molecules above this energy level are activated complexes, $AB^*(or, for the reverse reaction, P^*)$ $E^*_{A+B\rightarrow P}$ H AB_r ($ar, for the reverse reaction, P^*)$ $T\Delta S_r$ Reactants Progression of reaction (reaction coordinate)
pp.122–130	Complete updated problems are provided in a separate file. The revised Problem 19 is available on the book's webpage at waveland.com.

Chapter 3	(continued)
p.126 Problems	In Problem 12, the rate constant in line 8 has incorrect units. The expression should be $k = 10^{-3.2} \text{ atm}^{-1} \cdot \text{s}^{-1}$, not $k = 10^{-3.2} \text{ atm}^{-1} \cdot \text{d}^{-1}$.
p.128 Problems	In Problem 19, in the drawing of the reaction scheme, the formula for <i>DMA</i> (the chemical that initiates the reaction) should be $(CH_3)_2NH$, not $(CH_3)NH$. Also, a revised version of this question using an updated version of the reaction scheme is available on the book's webpage at waveland.com.
Chapter 4	
p.187	At the end of Example 4.9, the terms on the right side should be reversed, and all the minus signs should be plus signs. The equations should be: $\overline{G}_{O_2(aq)}^{\circ} = \Delta \overline{G}_r^{\circ} + \overline{G}_{O_2(g)}^{\circ}$ $= (16.32 + 0) \frac{\text{kJ}}{\text{mol}} = +16.32 \frac{\text{kJ}}{\text{mol}}$
p.205	In Equations (4.130) and (4.131), the minus signs on the right sides of the equations should be deleted. In Equation (4.143) at bottom of page, the first term in parentheses should be $1/T_1$, not $1/T_2$.
pp.206–214	Complete updated problems are provided in a separate file.
Chapter 5	
p.225	In Table 5.1, pK_{a3} for Arsenic acid should be 11.80.
p.233	Figure 5.11 caption, line 5: formed by reaction of the molecule "in part (a)" should be "in part (b)"
p.244	In the legend, top curves should be labeled 2e–3, not 3e–3.
p.272	Mass balance on <i>TOT</i> Na should be: TOT Na = $10^{-3.0} = (Na^+)$
p.274	pH value for the solution of 10^{-3} <i>M</i> NaPr should be 7.93 and not 7.60; in following paragraph, change 7.95 to 7.93.
pp.284–290	Complete updated problems are provided in a separate file.
Chapter 6	
p.331	In the last column of the table (Ex. 6.10), the third numerical entry should be 1.0×10^{-2} and the last two entries should be zero.
pp.345–352	Complete updated problems are provided in separate file.
Chapter 7	
p.366	The equations at the top of p.366 are incorrect. Replace that material with the following content:
	$[HAc]_{added} = [Acetate - 1]_{eq} - [Acetate - 1]_{in,init} = 1.1934 \times 10^{-3} - 1.0 \times 10^{-4}$
	$= 1.0934 \times 10^{-3}$
	$\left[\mathrm{HAc}\right]_{\mathrm{added}} = \left[\mathbf{H}^{+}\right]_{\mathrm{eq}} - \left[\mathbf{H}^{+}\right]_{\mathrm{in,init}} = 1.0934 \times 10^{-3} - 0 = 1.0934 \times 10^{-3}$

Chapter 7	(continued)						
p.367	In Figure 7.6 the		-			-	
	numerical values	in the parag	raph below th	ne figure.	Corrected mate	rial appears be	elow:
	(a)						
				No. of iteration	ns 1		
	pH	4.000	Sum o	of cations (eq/l	(g) 1.0117E-04		
	Ionic strength	1.00e-04	Sum	of anions (eq/l	(g) 1.5041E-05		
			Char	rge difference	(%) 74.114346		
	Concentrations a	nd activities of	aqueous inorga	nic species (nol / I) Print	to Excel	
			Concentration		Activity	Log	activity
	Acetate-1		1.5041E-05		1.4867E-05		4.828
	H+1		1.0117E-04		1.0000E-04	-	4.000
	H-Acetate (aq)		8.4959E-05		8.4961E-05	-	4.071
	OH-		1.0187E-10		1.0069E-10	-	9.997
	(b)						
	Distribution of comp	onents between d	issolved, sorbed an	d precipitated (ohases		
	-	ons in molal)					
	Component Acetate-1	Total dissolved 1.0000E-04	% dissolved 100.000	Total sorbed	% sorbed 0.000	Total precipitated 0	% precipitated 0.000
	H+1	1.8613E-04	100.000	0	0.000	0	0.000
	Of the 1.861×10^{-1} (i.e., H_3O^+), generative with acetate in H (4.74), the proton	$\mathbf{H}^{+} = \left[\mathbf{H}^{+} \right]_{eq} - \mathbf{M} TOT \mathbf{H}$ erating an \mathbf{H}^{+} (Ac molecule	$\begin{bmatrix} \mathbf{H}^+ \end{bmatrix}_{\text{in,init}} = 1.$ (in the equilitient of 1) (es. As expected	$.861 \times 10^{-4}$ brium solu $0^{-4.0}$. The red, since the	$-1.00 \times 10^{-4} = 8$ tion, 1.012×1 rest of the <i>TOT</i> the pH of 4.0 is 1	3.61×10 ⁻⁵ 0 ⁻⁴ <i>M</i> is prese H (8.496 × 10 lower than p <i>K</i>	nt as free H ⁺ $T^{-5} M$ is bour a for HAc
	$(1.487 \times 10^{-5}).$						
Chapter 8							
p.389	In Figure 8.4(b), respectively.	the labels fo	or HAc and A	c ⁻ should l	be switched wit	h those for Nl	$\rm H_4^+$ and $\rm NH_3$,
p.392	In the fourth line in the ninth line, in the last line, 2 In the summary a value at the botto	3.00 should .08 should be at the end of	be 3.16; and e 2.10. the solution,				2×10^{-3} and th
p.403	In third paragrap	h, line 5, del	ete "wide"				
p.407	Broken line in gr	aph should b	be at pH 6.8 a	nd pass th	rough intersect	ion of two titr	ation curves.

Chapter 8	(continued)
p.410	The units in the denominator of Equation (8.6) should be mol/L, not equiv/L, and the half- sentence following the equation ("where the number fully protonated.") should be deleted.
p.422	In the last sentence on the page, $10^{-4.7}$ should be $10^{-4.5}$.
p.425	In Table 8.6, row (h), the value in the ALK column should be 3.01, not 2.51.
p. 427	In Equation (8.21b), insert a coefficient "2" before α_2 .
p.432	In the equation at the bottom of the page, the signs on the (H^+) and (OH^-) terms are reversed. The equation should read:
	$TOTH = 2H_2CO) + (HCO_3^{-}) - (OH^{-}) + (H^{+})$
p.452-453	Throughout the example, 9.25 should be 9.24. In the table, the values of 0.01 and 0.99 in the NH_3 column should be reversed.
pp.457–468	Complete updated problems are provided in a separate file.
Chapter 9	
p.480	In the equation shown for part (b), the $c_{L,i}$ in the first fraction should be $c_{L,i'}$ and the $c_{L,i'}$ in the second fraction should be $c_{L,i'}$
p.490	Denominator in final equation in Ex 9.3b should be 730, not 769, and result should be 12.0, not 14.9.
p.506	In the first full paragraph, after "can be input", add ", and the species name must end with '(g)".
pp.519–525	Complete updated problems are provided in separate file.
Chapter 10	
p.534	The log <i>K</i> values for Reactions (10.4) through (10.11) have been updated to be consistent with the Visual Minteq database. These values should be, respectively: 3.90 , 3.81 , 0.99 , 0.01 , 7.71 , 8.71 , -10.19 , and -33.30 .
p.535–536 and 542–544	The values in Tables 10.2 and 10.3 have been updated to be consistent with the Visual Minteq database. These tables also appear in the appendices as A.4 and A.5. Complete revised versions of these tables are provided at the end of this document.
p.536	The log <i>K</i> values for the four reactions near the bottom of the page have been updated to be consistent with the Visual Minteq. The updated values are $-10.10, -10.19, -13.01$, and -13.99 , respectively.
p.539	Eq. 10-21 to 10-27:
	The log <i>K</i> values for the seven reactions at the top of the page have been updated to be consistent with the Visual Minteq. The updated values are 2.214, 2.284, 2.364, 2.204, 4.498, 6.862, and -7.030, respectively.
p.542	See end of file for corrected copy of Table 10.3
p.546	At end of penultimate paragraph, change "10.08" to "10.10" and "10.27" to "10.19".
p.561	Table 10.6: In the expressions for <i>K</i> for reactions 9 and 10, delete the $'/'$.
	Complete updated problems are provided in separate file.

Chapter 11	
p.581	Table 11.1: $\log K_{s0}$ for Al(OH) ₃ (<i>am</i>) is -31.20, not -31.10.
pp.649-660	Complete updated problems are provided in a separate file.
p.652 Problems	In Problem 22, line 5, change $Zn(OH)_2(s)$ to $Zn(OH)_2(am)$.
Chapter 12	
all pages	Change 0.059 to 0.0592 throughout chapter
p.665	In Solution, the coefficient of 6 should precede $\bar{G}^{o}_{O_{2}(aq)}$, not $\bar{G}^{o}_{C_{6}H_{12}O_{6}}$.
p.677	Table 12.3: Data for $Pb^{4+} \rightarrow Pb^{2+}$ should be $\log K = 57.28$, $pe^{\circ} = 28.64$, and $E_{H}^{\circ} = 1690$. On p.678, $\log K$ for $Ag^{+} \rightarrow Ag(s)$ should be 13.507.
p.678	Final reaction in middle of page should have 10 H^+ (not 9 H^+) as a reactant and $\text{H}_2\text{S}(aq)$ (not HS^-) as a product.
p.682	In the expression for $\{Cu^+\}/\{Cu^{2+}\}\$ near the bottom of the page, $10^{2.72}$ should be $10^{2.69}$, and $10^{-25.92}$ should be $10^{-25.95}$.
	Two lines lower, in the expression for $\{Co^{2+}\}/\{Co^{3+}\}$, $10^{33.1}$ should be $10^{32.4}$, and $10^{2.46}$ should be $10^{3.76}$.
p.684	In table near top of page, pK_{a3} for H ₃ AsO ₄ should be 11.80. In middle reaction near the bottom of the page, $10^{-7.6}$ should be $10^{-6.7}$. In subsequent two equations, 3.71×10^{43} should be 1.18×10^{39} . Then, in equation at bottom of page and in paragraph at top of p.685, -0.80 should be +1.45.
p.686	The following sentence should be added to the answer to part (a) at the bottom of the page:
	The half-reaction for oxidation of NH ₃ can be obtained by adding the " K_a " reaction for NH ₄ ⁺ /NH ₃ to the half-reaction shown in Table 12.3 for the NO ₃ ⁻ /NH ₄ ⁺ couple.
p.687	In part (ii) Cl_2/CH^- :
	In the first reaction shown, the product should be Cl^- , not $\frac{1}{2}Cl^-$ (see below)
	$\frac{1}{2}Cl_2(aq) + e^- \leftrightarrow Cl^-$
	In the third reaction shown, insert a + sign between Cl^- and $\frac{1}{2} OCN^-$ on the product side (see below)
	$\frac{1}{2}Cl_2(g) + \frac{1}{2}CN^- + OH^- \leftrightarrow Cl^- + \frac{1}{2}OCN^- + \frac{1}{2}H_2O$
	In the last sentence before equation (12.22), omit the word "log" before variable <i>K</i> . The sentence should read
	By definition, e° equals K for the oxidation reaction, so we can write:
p.698–99	In line 4 of Example 12.10, $10^{45.61}$ should be $10^{35.4}$, $10^{52.63}$ should be $10^{43.6}$, and $\text{Fe}(\text{CN})_6^{3-}$ should be $\text{Fe}(\text{CN})_6^{4-}$. (Note that the species $\text{Fe}(\text{CN})_6^{3-}$ on the subsequent line is correct.)
	Correspondingly, the log K values for the reactions at the top of p.699 should be 35.4 for the second reaction, -43.6 for the third reaction, and 4.83 (instead of 6.01) for the overall reaction.
	Also, in the second reaction, the reactant Fe^{3+} should be Fe^{2+} .
	And, in the final paragraph of the solution, $10^{-6.01}$ should be $10^{-4.83}$, and >6.01 should be >4.83.

Chapter 12	(continued)
p.717	Revise final paragraph as follows:
	To account for the redox reactions and conditions, we "Add" the $Cu+/Cu^{2+}$ couple from the "Redox" menu and use the "Parameters/Specify pe and Eh" menu to indicate that the program should calculate the equilibrium pe. Lacking insight into what we expect the pe to be, we can leave the guess at the default value of 0. Finally, because the problem statement specifies that the solution reaches equilibrium with both nantokite and metallic copper, we specify that both of these solids are present as "infinite solid phases" via the "Solid phases and excluded species" menu.
p.731	In Equation (12.78b), change mV to V.
p.736	In Row 1, move "= -2.303" to second line. Add new footnote: (b) "Note that {Red} and {Ox} refer to the products of all terms on the reduced and oxidized sides of the reaction, other than e ⁻ ." Change footnote (b) to (c), and change "of the oxidation and reduction half-reactions" to "of the half-reactions for the oxidant and reductant."
pp.757–768	Complete updated problems are provided in a separate file.
p.759 Problems	In Problem 9, line 1, change $S(s)$ to SO_3^{2-} .
Chapter 13	
pp.841-845	Complete updated problems are provided in a separate file.
Appendices	
p.858-859	Appendix A.4: See following pages for corrected table 10.2.
p.860-862	Appendix A.5: See end of file for corrected table 10.3.
Index	For index entries referring to pages shown in the range 664–770 (Chapter 12), subtract 2 from the page numbers shown. For entries referring to pages shown in the range 763–838 (Chapter 13), add 7 to the page numbers shown.

Table 10.2 – p 535 and Appendix A.4, p.858 $\,$

	i	$\log K_i$	$\log^* K_i$	$\log \beta_i$	$\log^* \beta_i$
Ag ⁺	1	2.00	-12.00	2.00	-12.00
	2	2.00	-12.00	4.00	-24.00
2					
Al ³⁺	1	9.00	-5.00	9.00	-5.00
	2	8.71	-5.29	17.71	-10.29
	3	7.60	-6.40	25.31	-16.69
	4	7.69	-6.31	33.00	-23.00
Ca ²⁺	1	1.30	-12.70	1.30	-12.70
Cd^{2+}	1	3.90	-10.10	3.90	-10.10
	2	3.81	-10.19	7.71	-20.29
	3	0.99	-13.01	8.70	-33.30
	4	0.01	-13.99	8.71	-47.29
Co ²⁺	1	4.30	-9.70	4.30	-9.70
	2	4.91	-9.09	9.21	-18.79
	3	1.30	-12.70	10.51	-31.49
Cr ³⁺	1	10.43	-3.57	10.43	-3.57
	2	7.73	-6.27	18.16	-9.84
	3	7.65	-6.35	25.81	-16.19
	4	2.54	-11.46	28.35	-27.65
Cu ²⁺	1	6.50	-7.50	6.50	-7.50
	2	5.27	-8.73	11.77	-16.23
	3	3.59	-10.41	15.36	-26.64
	4	0.91	-13.09	16.27	-39.73
Fe ²⁺	1	4.60	-9.40	4.60	-9.40
10	2	2.91	-11.19	7.51	-20.49
	3	3.50	-10.50	11.01	-20.49 -30.99
	5	5.50	10.50	11.01	50.77
Fe ³⁺	1	11.98	-2.02	11.98	-2.02
	2	10.27	-3.73	22.25	-5.75
	3	4.75	-9.25	27.00	-15.00
	4	6.30	-7.70	33.30	-22.70

Table 10.2 Stability constants for complexation of metals by OH⁻.

Table 10.2, continued – p 536 and Appendix A.4, p.859

Table	10.2	2 – Conti	nued from	previous	s page
	i	$\log K_i$	$\log^* K_i$	$\log \beta_i$	$\log^* \beta_i$
Hg ²⁺	1	10.60	-3.40	10.60	-3.40
	2	11.24	-2.76	21.84	-6.16
Mg^{2+}	1	2.58	-11.42	2.58	-11.42
2.					
Ni ²⁺	1	4.11	-9.89	4.11	-9.89
	2	4.90	-9.10	9.01	-18.99
	3	3.00	-11.00	12.01	-29.99
Pb ²⁺	1	6.40	-7.60	6.40	-7.60
	2	4.51	-9.49	10.91	-17.09
	3	3.00	-11.00	13.91	-28.09
H_4SiO_4	1	4.16	-9.84	4.16	-9.84
	2	1.80	-12.20	5.96	-22.04
Zn ²⁺	1	5.00	-9.00	5.00	-9.00
	2	6.11	-7.89	11.11	-16.89
	3	2.50	-11.50	13.61	-28.39
	4	1.20	-12.80	14.81	-41.19

Table 10.2 – Continued from previous page

Tal	ble 10.3 St th	tability e ligai	Stability constants for so the ligand, H^+ , and H_2O .	or some metal- 1 ₂ 0.	-ligand complex	es. Values corre	Table 10.3 Stability constants for some metal-ligand complexes. Values correspond to $\log \beta$ for formation of the complex from the free metal, the ligand, H ⁺ , and H ₂ O.	or forma	tion of th	ne comple	ex from t	he free me	stal,
	CO_{3}^{2-}	I	SO_4^{2-}	CI-	۲	$\rm NH_3$	PO_4^{3-}	EDTA	ΓA	CN ⁻	4	-SH	
Ag ⁺			AgL 1.30	AgL 3.31	AgL 0.40	AgL 3.31		AgL	8.05	AgH_1L-0.78	-0.78	AgL	13.82
			AgL_2 5.25		AgL_2	7.21		AgHL	14.74	AgL_2	20.48	AgL_2	17.91
			AgL ₃ 5.20							AgL_3	21.70	AgH_IL	5.30
												$AgH_{\text{-}I}L_2$	8.59
Al^{3+}			AIL 3.84	AIL -0.39) AIL 7.01		AIHL 20.01	AIL	18.96				
			AlL ₂ 5.58		AlL ₂ 12.63		Al ₂ L 18.98	AIHL	21.78				
					AlL ₃ 16.70								
					AlL ₄ 19.40								
Ca^{2+}	CaL 3.22	3.22	CaL 2.36	CaL 0.40	CaL 1.14	CaL 0.20	CaL 6.46	CaL	12.44				
	CaHL 11.43	1.43				$CaL_{2} - 0.11$	CaHL 15.04	CaHL	15.97				
							$CaH_2L 20.92$						
Cd ²⁺	CdL 4.37	1.37	CdL 2.37	CdL 1.98	CdL 1.20	CdL 2.55	CdHL 16.08	CdL	18.10	CdL	6.01	CdL	8.01
	CdL ₂ 7.23	7.23	CdL ₂ 3.50	CdL ₂ 2.60		CdL ₂ 4.55		CdHL	21.43	CdL_2	11.12	CdL_2	15.31
	CdHL 11.83	1.83				CdL ₃ 5.89		CdH ₂ L 23.23	23.23	CdL_3	15.65	CdL ₃	17.11
						CdL ₄ 6.80				CdL_4	17.92	CdL_4	19.31
Co^{2+}	CoL 4.28	1.28	CoL 2.30	CoL -0.35	5 CoL 1.40	CoL 2.03	CoHL 15.43	CoL	18.16			CoL	5.20
	CoHL 12.22	2.22				CoL ₂ 3.49		CoHL 21.59	21.59				

4 đ 4 4+ + 5 4 ď -Volv -_ i _ 4

542

Table 10.3 – p. 542 and Appendix A.5, p. 860

	-SH											5.62						
	Н											FeL						
	L	14.31		23.00								35.40 FeL	39.71	42.11		43.60	47.64	
	CN^{-}	CoH ₂ L 23.49 CoL ₃ 14.31		CoL ₅								16.01 FeL ₆	FeH ₂ L 22.27 FeHL 19.05 FeHL ₆ 39.71	FeH ₂ L ₆ 42.11		FeL_6	29.17 Fe ₂ L ₆	
	ΓA	23.49						20.49	24.02	26.23		16.01	19.05			27.66 FeL ₆		
	EDTA	CoH_2L						CuL	CuHL 24.02	CuH ₂ L 26.23		FeL	FeHL			FeL	FeHL	
Table 10.3 – continued from previous page	PO_4^{3-}				CrHL 16.16	CrH ₂ L 22.07		CuHL 16.50				FeHL 15.98	, 22.27			FeHL 22.28	FeH ₂ L 23.85	
m previc	PC				CrHL			CuHL					FeH ₂ I			FeHL	FeH ₂ I	
ned fro	NH_3	CoL ₃ 4.42	CoL ₄ 5.05	CoL ₅ 5.11	CrL 4.40	CrL ₂ 4.10		CuL 4.02	CuL ₂ 7.41	CuL ₃ 10.19	CuL ₄ 12.28	FeL 1.40	FeL ₂ 2.24	FeL ₃ 2.67	2.73			
- contin	2	CoL	CoL_{4}	CoL	CrL			CuL	CuL	CuL	CuL ₂	FeL	FeL_2	FeL ₃	FeL_4			
e 10.3 -	F				CrL 5.20	CrL ₂ 9.04	CrL ₃ 11.71	CuL 1.70				1.21				6.04	FeL ₂ 10.66	FeL ₃ 13.70
Table						CrL_2	CrL_3	CuL				FeL				FeL	FeL_2	FeL ₃
	Cl [_]				CrL -0.54			CuL 0.30	CuL ₂ -0.26	CuL ₃ -2.29	CuL ₄ -4.59	FeL -0.20 FeL				1.48		
	0				CrL			CuL	CuL_2	CuL ₃	CuL_4	FeL				FeL		
	SO_4^{2-}				3.10			CuL 2.36	L 2.34			2.39				FeL 4.25	FeL ₂ 5.38	
	S(CrL				CuHI			FeL				FeL	FeL_2	
	CO_{3}^{2-}							CuL 6.77	CuL ₂ 10.20 CuHL 2.34	CuHL 12.13		FeHL 11.43 FeL						
	ŭ							1	CuL_2	CuHL		FeHL						
					Cr^{3+}			Cu ²⁺				Fe^{2+}				Fe^{3+}		

						Tabl	e 10.3 -	- contin	ued fro	Table 10.3 – continued from previous page	us page						
	CO_{3}^{2-}	3 ²⁻	SO_4^{2-}		CI-	F	F^{-}	N	NH_3	PO_4^{3-}	3-	ED	EDTA	CN ⁻	1	-SH	
Hg^{2+}	HgL	HgL 12.13	HgL 2.47		HgL 7.33	HgL	1.60					HgL	23.24	HgL	17.00		
	HgL_2	15.58	HgL ₂ 15.58 HgL ₂ 3.48		HgL ₂ 14.03			HgL_2	HgL ₂ 17.79			HgHL	26.87	HgL_2	32.75	HgL_2	38.42
	HgHL	HgHL 16.35			HgL ₃ 15.03							HgH ₂ L	HgH ₂ L 29.17	HgL_3	36.31	HgH ₋₁ L ₂ 31.93	2 31.93
					HgL ₄ 15.63			HgL_4	HgL ₄ 19.28					HgL_4	38.97	HgH_2L2 23.22	23.22
Ni^{2+}	Ni ²⁺ NiL 4.57	4.57	NiL 2.30 NiL	30	NiL -0.43		NiL 1.30	NiL	2.72	NiHL 15.33	15.33	NiL	20.11	NiL_4	30.20	NiL	5.49
	NiHL	12.42	NiL ₂ 0.8	82]	NiHL 12.42 NiL ₂ 0.82 NiL ₂ -1.89			NiL_2	4.87	NiH ₂ L	NiH ₂ L 20.50	NiHL	23.64	NiHL ₄	36.03		
								NiL_3	6.53			NiH ₂ L	NiH ₂ L 24.74	NiH ₂ L ₄	40.74		
								NiL_4	7.65					NiH ₃ L ₄	43.34		
								NiL5	8.31								
								NiL ₆	8.27								
Pb^{2+}	PbL	PbL 6.53	PbL 2.69	[69	PbL 1.56	PbL	2.15			PbHL 15.48	15.48	PbL	19.71				
	PbL_2	PbL ₂ 9.94	PbL ₂ 3.47 PbL ₂	47]	PbL ₂ 1.90	PbL_2	PbL ₂ 3.24			PbH ₂ L 21.07	21.07	PbHL	22.54			PbL_2	15.27
	PbHL 13.23	13.23			PbL ₃ 1.80							PbH ₂ L	24.44			PbL_3	16.57
					PbL ₄ 1.38							PbH ₃ L	25.64				
Zn^{2+}		4.76	ZnL 4.76 ZnL 2.34		ZnL 0.46	ZnL	ZnL 1.30	ZnL	2.21	ZnHL 15.69	15.69	ZnL	18.00			$ZnH_{-2}L_2 - 1.43$	-1.43
	ZnL_2	ZnL ₂ 7.30	ZnL_2 3.28 ZnL_2	28	ZnL ₂ 0.45			ZnL_2	4.49			ZnHL	ZnHL 21.43	ZnL_2	11.07		
	ZnHL 11.83	11.83			ZnL ₃ 0.50			ZnL_3	ZnL ₃ 6.85			ZnH_2L	ZnH ₂ L ₂ 22.83	ZnL_3	16.05		
					ZnL ₄ 0.20			ZnL ₄ 8.87	8.87					ZnL_4	19.62		

Table 10.3, continued $\left(p.3\right) -p.$ 544 and Appendix A.5, p. 862

Errata for 1st Printing of Water Chemistry 2E by Mark Benjamin

Updated 2017 August